Thank You for an Exceptional Day of Learning!

By Alison Singer

On behalf of everyone at the Autism Science Foundation, I would like to extend a heartfelt THANK YOU to everyone who took part in our incredible Day of Learning on March 30.

After two difficult pandemic years, it was truly soul-affirming to see so many people gathered together in support of the autism community, both in-person in New York and online from across the globe.

The day was filled with engaging speakers, inspiring award-winners and even a touching musical performance by self-advocate Tom Bak, who movingly closed out the show with his guitar.

Videos of all our Day of Learning talks are now available online for free on our YouTube page. The full playlist can be accessed here.

I am tremendously grateful to all of our distinguished speakers, who thoughtfully shed light on the most critical issues in the autism community. Here is the full list of our speakers and topics, with links to their individual videos:

  • Dr. Susan Daniels, Interagency Autism Coordinating Committee: “Shaping New Federal Priorities for Autism Research, Services and Policy”

  • Dr. Matthew Maenner, Centers for Disease Control and Prevention: “Behind the Numbers: What Do the New CDC Autism Data Mean?”

  • Dr. Brigitta Gundersen, Simons Foundation Autism Research Initiative: “Understanding the Biological Bases for Sex Differences in ASD: Novel Research Approaches”

  • Dr. Amy Wetherby, Autism Institute, Florida State University: “Using Mobile Technology to Help Families Detect Autism Earlier and Improve Outcomes”

  • Dr. Zoë Hawks, Harvard Medical School: “Measuring the Impact of Leisure Activities on Quality of Life in Autism: What Do the Data Show?”

  • Richard Spurling, ACEing Autism: “Building Skills Through Tennis”

  • Tom Bak, College Student and Musician: “How Music Has Enriched My Life”

I would also like to once again congratulate our worthy award winners: the late Suzanne Wright and Samantha Els. I am truly grateful to the Wright and Els families for attending the event and further demonstrating their incredible support for people and families impacted by autism.

I was also proud to announce that ASF has renamed our Research Accelerator Grants to the ‘Suzanne Wright Memorial Accelerator Grants’ in honor of this incredible advocate, who was all about urgency, inclusion and wanting answers immediately. Stay tuned for this RFA to be released later this month.

Thank you again to everyone who participated in this great event. We are already looking forward to seeing everyone next year!

– The ASF Team

Can technology aid in an autism diagnosis?

It’s 2022 and technology and smartphones or iPads are being used in multiple ways to help identify signs of autism for remote evaluations. This week’s blog discusses one of them, called CanvasDx which received FDA marketing authorization in June 2021.

By Lani Hessen, Sr. Director Patient Advocacy, Cognoa Inc[1] .

What are the current problems in autism evaluations and diagnosis? 

Capturing behaviors through a smartphone

On average, parents first report concerns about their child’s development to their primary care provider when the child is 14 months old [1]. While parental concern is highly indicative of a potential autism spectrum disorder it is common for families to experience a prolonged wait before receiving their child’s diagnosis[2]. Delayed diagnosis can lead to missed opportunities to start ASD specific intervention during the early developmental period where it can have a greater benefit[2]  than later intervention [3–8]. While a reliable ASD diagnosis can be made for a child as young as 18 months, the average age of diagnosis in the United States remains very high at 4 years and three months [9–11]. This age has remained largely unchanged for over 20 years despite increased awareness of the value of early intervention [9]. On average, caregivers report a three year delay between the time of their first concern and their child’s eventual diagnosis. Some children, such as girls, those who are non-White, or those who live in rural or remote areas can wait much longer than this [12–15].

Many factors contribute to diagnostic delays. ASD evaluations are usually conducted by specialists with ASD diagnostic expertise. Unfortunately, there are not enough of these specialists to meet the growing need for ASD assessments. As a result, many families end up on long wait-lists [16]. If primary care providers could assess and diagnose more children in the medical home, this could decrease strain on our specialty services and shorten wait-times. However, current diagnostic tools [17] are difficult to use in primary care settings; they take a long time to administer, are best conducted in-person, and may require specialist training [18]. Primary care providers require efficient, practical solutions that equip them to diagnose more children in the medical home. In the context of the ongoing COVID-19 pandemic, they also require clinically validated ASD diagnostic tools that can be delivered remotely.

What is Cognoa and can they help?

Cognoa is a pediatric behavioral health company developing diagnostic and therapeutic products with the goal of enabling equitable access to care and improving the lives and outcomes of children and families living with behavioral health conditions, starting with autism.

Cognoa’s diverse team of experts includes data scientists, engineers, researchers and clinicians. Our medical and advocacy team has expertise across a range of disciplines including occupational therapy, psychology, child and adolescent psychiatry, nursing, pediatrics, and developmental disability. We are committed to listening and learning from the voice of the community.  

Did Cognoa talk to stakeholders while they were developing the tool?

We have spoken to families and heard them express frustration when primary care physicians do not take their concerns seriously. Additionally, families express concern about the lack of ASD specific education physicians receive. It often falls on caregivers to become the autism experts, and they may be left to coordinate their child’s care needs with minimal support. Navigating the diagnostic journey can be daunting due to conflicting advice, fragmented services and long wait-lists for specialist assessments. We have heard from families that they would welcome tools and research that could streamline this process. Additionally, self-advocates have expressed the need for a data driven approach that is inclusive of all presentations of ASD, thereby decreasing mis-diagnosis or delayed or missed diagnosis.

Primary care physicians have also expressed a number of concerns with the current diagnostic process including frustration over the length of time many families they refer are required to wait before receiving a specialist evaluation. Some primary care physicians have described lack of sufficient ASD specific training and tools as additional barriers to care. The primary care setting is also very time-pressured, and physicians have described how difficult it can be to carve out sufficient time to comprehensively evaluate, review results and discuss treatment plans with families [19,20]

How does this work?  What problem does it solve? 

The team at Cognoa has developed a digital diagnostic device called Canvas Dx to help address ongoing delays in ASD diagnosis and the lack of diagnostic tools available for primary care use. Canvas Dx is a prescription AI-based diagnosis aid intended to support primary care doctors to accurately and efficiently diagnose autism in children ages 18-72 months who are at risk for developmental delay based on a caregiver/parental or doctor concern. It falls under a class of products called software as a medical device (SaMD)[21], which includes software or mobile apps that are intended to treat, diagnose, monitor, mitigate, or prevent disease or other conditions. 

Canvas Dx makes use of a machine learning algorithm that was initially developed using patient record data from thousands of children with diverse conditions, presentations, and comorbidities who were either diagnosed with ASD or confirmed not to have ASD based on standardized diagnostic tools and representing both genders across the supported age range. The Canvas Dx algorithm has been iteratively improved and prospectively validated over the past 6-7 years prior to the pivotal study.[22–27]. In order to use Canvas Dx you need a prescription from your care provider and access to a smart-phone. The following information is then collected:

  • Parents/caregivers complete a questionnaire via the Canvas Dx caregiver-facing app and upload two short videos of their child. The questionnaire takes about 10 minutes to complete.
  • These videos are scored for behavioral features of autism by trained video analysts.
  • A doctor completes a questionnaire based on a visit with the parent/caregiver and child. The visit can be remote or in-person.

Canvas Dx uses AI to analyze these three inputs, and if the information is sufficient, it generates a result that the doctor uses as an aid to diagnose or rule out autism. Or it may result in the need for further evaluation The device is not intended for use as a stand-alone diagnostic device but to complement clinical expertise.

5. Who should be asking for a prescription for this? 

Your primary care physician can prescribe Canvas Dx if they think it is suitable. It is designed to be used for children aged 18-72 months who are at risk for developmental delay based on a caregiver/parental or doctor concern.

Should I ask my doctor about it? 

You can speak to your doctor about concerns that you have for your child’s development and start a conversation about next steps to get your concerns resolved. 

What do I need to do? 

Bring your child to well-child visits and express any concerns that you have about your child’s development.

What happens after I finish it?   Who looks at it?  What does it tell me?

Once all 3 inputs are complete, Canvas DX produces a report for your primary care provider to review with you. The report will provide one of three outputs: Positive ASD, Negative ASD, or No Result.      

Further action can then be taken based on your care provider’s clinical judgement. For example, a positive result, combined with your provider’s own judgment, may prompt your pediatrician to make referrals to autism specific interventions in your area. A negative result, in combination with your provider’s clinical judgment, may prompt your pediatrician to begin to address your concerns via other avenues that are specific to the type of developmental delay that you are concerned about. Your provider may recommend further evaluation by a specialist.

Then what?                

Your care provider, as well as local and national autism advocacy and education groups, like ASF, can help to guide you toward next steps no matter what the outcome of the test.

Are there opportunities to help this research further without using CanvasDX?

Yes! Cognoa is  looking for a broad range of participants across age, ethnicity and geographic location in order to gather valuable and varied insights that truly represents the ASD community’s perspective during their diagnostic journey.  The survey is anonymous as no identifying data or personal health information will be asked . Cognoa is seeking participants who will be comfortable sharing their experiences around their pathway to diagnosis. Participation is completely voluntary, you can skip any question you chose not to answer and it should take roughly 20 mins to complete. You can go here to the survey: https://www.research.net/r/KCR6M22

References:

1.     Matheis M, Matson JL, Burns CO, Jiang X, Peters WJ, Moore M, de Back KA, Estabillo J. Factors related to parental age of first concern in toddlers with autism spectrum disorder. Developmental neurorehabilitation Taylor & Francis; 2017;20(4):228–235.

2.     Christensen DL, Maenner MJ, Bilder D, Constantino JN, Daniels J, Durkin MS, Fitzgerald RT, Kurzius-Spencer M, Pettygrove SD, Robinson C. Prevalence and characteristics of autism spectrum disorder among children aged 4 years—early autism and developmental disabilities monitoring network, seven sites, United States, 2010, 2012, and 2014. MMWR Surveillance Summaries Centers for Disease Control and Prevention; 2019;68(2):1.

3.     Flanagan HE, Perry A, Freeman NL. Effectiveness of large-scale community-based intensive behavioral intervention: A waitlist comparison study exploring outcomes and predictors. Research in Autism Spectrum Disorders Elsevier; 2012;6(2):673–682.

4.     Smith T, Klorman R, Mruzek DW. Predicting Outcome of Community-Based Early Intensive Behavioral Intervention for Children with Autism. Journal of Abnormal Child Psychology 2015 Oct 1;43(7):1271–1282. [doi: 10.1007/s10802-015-0002-2]

5.     Dawson G, Rogers S, Munson J, Smith M, Winter J, Greenson J, Donaldson A, Varley J. Randomized, Controlled Trial of an Intervention for Toddlers With Autism: The Early Start Denver Model. Pediatrics 2010 Jan 1;125(1):e17. [doi: 10.1542/peds.2009-0958]

6.     Mazurek MO, Kanne SM, Miles JH. Predicting improvement in social–communication symptoms of autism spectrum disorders using retrospective treatment data. Research in Autism Spectrum Disorders 2012 Jan 1;6(1):535–545. [doi: 10.1016/j.rasd.2011.07.014]

7.     MacDonald R, Parry-Cruwys D, Dupere S, Ahearn W. Assessing progress and outcome of early intensive behavioral intervention for toddlers with autism. Research in Developmental Disabilities 2014 Dec 1;35(12):3632–3644. [doi: 10.1016/j.ridd.2014.08.036]

8.     Vivanti G, Dissanayake C, The Victorian ASELCC Team. Outcome for Children Receiving the Early Start Denver Model Before and After 48 Months. Journal of Autism and Developmental Disorders 2016 Jul 1;46(7):2441–2449. [doi: 10.1007/s10803-016-2777-6]

9.     Maenner MJ, Shaw KA, Baio J. Prevalence of autism spectrum disorder among children aged 8 years—autism and developmental disabilities monitoring network, 11 sites, United States, 2016. MMWR Surveillance Summaries Centers for Disease Control and Prevention; 2020;69(4):1.

10.   van’t Hof M, Tisseur C, van Berckelear-Onnes I, van Nieuwenhuyzen A, Daniels AM, Deen M, Hoek HW, Ester WA. Age at autism spectrum disorder diagnosis: A systematic review and meta-analysis from 2012 to 2019. Autism SAGE Publications Sage UK: London, England; 2021;25(4):862–873.

11.   Pierce K, Gazestani VH, Bacon E, Barnes CC, Cha D, Nalabolu S, Lopez L, Moore A, Pence-Stophaeros S, Courchesne E. Evaluation of the diagnostic stability of the early autism spectrum disorder phenotype in the general population starting at 12 months. JAMA pediatrics American Medical Association; 2019;173(6):578–587.

12.   Delobel-Ayoub M, Ehlinger V, Klapouszczak D, Maffre T, Raynaud J-P, Delpierre C, Arnaud C. Socioeconomic disparities and prevalence of autism spectrum disorders and intellectual disability. PloS one Public Library of Science San Francisco, CA USA; 2015;10(11):e0141964.

13.   Oswald DP, Haworth SM, Mackenzie BK, Willis JH. Parental report of the diagnostic process and outcome: ASD compared with other developmental disabilities. Focus on Autism and Other Developmental Disabilities SAGE Publications Sage CA: Los Angeles, CA; 2017;32(2):152–160.

14.   Wiggins LD, Durkin M, Esler A, Lee L-C, Zahorodny W, Rice C, Yeargin‐Allsopp M, Dowling NF, Hall‐Lande J, Morrier MJ. Disparities in documented diagnoses of autism spectrum disorder based on demographic, individual, and service factors. Autism Research Wiley Online Library; 2020;13(3):464–473.

15.   Shattuck PT, Durkin M, Maenner M, Newschaffer C, Mandell DS, Wiggins L, Lee L-C, Rice C, Giarelli E, Kirby R, Baio J, Pinto-Martin J, Cuniff C. Timing of Identification Among Children With an Autism Spectrum Disorder: Findings From a Population-Based Surveillance Study. Journal of the American Academy of Child & Adolescent Psychiatry 2009 May 1;48(5):474–483. [doi: 10.1097/CHI.0b013e31819b3848]

16.   Gordon-Lipkin E, Foster J, Peacock G. Whittling down the wait time: exploring models to minimize the delay from initial concern to diagnosis and treatment of autism spectrum disorder. Pediatric Clinics Elsevier; 2016;63(5):851–859.

17.   Falkmer T, Anderson K, Falkmer M, Horlin C. Diagnostic procedures in autism spectrum disorders: a systematic literature review. European Child & Adolescent Psychiatry 2013 Jun 1;22(6):329–340. [doi: 10.1007/s00787-013-0375-0]

18.   Kaufman NK. Rethinking “gold standards” and “best practices” in the assessment of autism. null Routledge; 2020 Aug 27;1–12. [doi: 10.1080/21622965.2020.1809414]

19.   Fenikilé TS, Ellerbeck K, Filippi MK, Daley CM. Barriers to autism screening in family medicine practice: a qualitative study. Primary Health Care Research & Development 2014/11/04 ed Cambridge University Press; 2015;16(4):356–366. [doi: 10.1017/S1463423614000449]

20.   Self TL, Parham DF, Rajagopalan J. Autism Spectrum Disorder Early Screening Practices: A Survey of Physicians. Communication Disorders Quarterly SAGE Publications Inc; 2015 Aug 1;36(4):195–207. [doi: 10.1177/1525740114560060]

21.   FDA. Software as a Medical Device (SaMD) [Internet]. FDA; Available from: https://www.fda.gov/medical-devices/digital-health-center-excellence/software-medical-device-samd

22.   Abbas H, Garberson F, Liu-Mayo S, Glover E, Wall DP. Multi-modular AI approach to streamline autism diagnosis in young children. Scientific reports Nature Publishing Group; 2020;10(1):1–8.

23.   Abbas H, Garberson F, Glover E, Wall DP. Machine learning approach for early detection of autism by combining questionnaire and home video screening. Journal of the American Medical Informatics Association Oxford University Press; 2018;25(8):1000–1007.

24.   Levy S, Duda M, Haber N, Wall DP. Sparsifying machine learning models identify stable subsets of predictive features for behavioral detection of autism. Molecular autism Springer; 2017;8(1):1–17.

25.   Tariq Q, Daniels J, Schwartz JN, Washington P, Kalantarian H, Wall DP. Mobile detection of autism through machine learning on home video: A development and prospective validation study. PLoS medicine Public Library of Science San Francisco, CA USA; 2018;15(11):e1002705.

26.   Wall DP, Dally R, Luyster R, Jung J-Y, DeLuca TF. Use of artificial intelligence to shorten the behavioral diagnosis of autism. Public Library of Science San Francisco, USA; 2012;

27.   Kosmicki JA, Sochat V, Duda M, Wall DP. Searching for a minimal set of behaviors for autism detection through feature selection-based machine learning. Translational psychiatry Nature Publishing Group; 2015;5(2):e514–e514.

28.   Cognoa. Cognoa Receives FDA Marketing Authorization for First-of-its-kind Autism Diagnosis Aid. 2021 Jun 2; Available from: https://cognoa.com/cognoa-receives-fda-marketing-authorization-for-first-of-its-kind-autism-diagnosis-aid/


A Pivotal Need…

Despite scientific advances in treatment for autism, most families across the United States do not have access to quality autism services, let alone gold standard Naturalistic Developmental Behavioral Intervention (NDBI) models.  There are a number of reasons for this concerning reality, including the limited number of trained autism clinicians around the country, the rising cost of services, geographic distance from autism service providers, and difficulties in effectively and efficiently training a large number of people in the latest treatment models. 

To accomplish the goal of distributing a highly effective intervention to the general public, this Department of Defense-funded study leverages the wide-spread use of smartphones nationwide. PI Ty Vernon and his UCSB research study team developed Pivotal, a smartphone app designed to train parents of young children with autism in an autism treatment model known as Pivotal Response Treatment (PRT). Forty-eight families will be recruited nationwide to participate in this trial.

PRT is a well-known, scientifically supported treatment that focuses on using child motivation, play-based lessons, and parent involvement to target the language skills and social engagement of children with autism. The Pivotal App offers eight interactive lessons in PRT, consisting of video examples, instructional slides, and brief quizzes. Participants include parents of a child (aged 1-4.5 years) with autism and significant language delay.  

The use of this technology will ensure that families can access gold standard autism treatment regardless of their geographic location, work schedules, or financial constraints. If successful, the UCSB teams plan to conduct a larger nationwide study and ultimately render the app available in smartphone app stores so that families everywhere can train themselves in this treatment approach.

For more details on this study and information on how to enroll, please visit  https://education.ucsb.edu/autism/research/prtapp

The Year in Review, 2021

This year was filled with both challenges and encouraging signs of progress. The world continues to cope with the many hardships associated with the COVID-19 pandemic, which have negatively impacted the community, including scientists who study autism. Families and individuals continue to show individualized and specialized needs, specifically those from racially and ethnically diverse communities, females and girls, and we continue to understand the specific needs of those groups. For example, the close of the year saw the publication of a report by the Lancet Commission, which formally introduces the concept of “profound autism” representing individuals with different support needs. New CDC data released in December also show that autism rates are rising while age at diagnosis is decreasing [1]. While this is not a comprehensive summary of every single autism discovery in 2021, here we summarize many significant autism discoveries and related news of the past year:

Lancet Commission Endorses Use of Term “Profound Autism”

On December 6, The Lancet published an extensive report from a global team of autism researchers and stakeholders. The report, titled “The Lancet Commission on the Future of Care and Clinical Research in Autism,” recognized that effective autism assessment and care require personalized, stepped-care approaches that meet an individual’s needs throughout their lives, and that greater investment is urgently needed to develop and refine practical interventions that can improve the lives of people with autism. The Commission also formally introduced the term “profound autism” to distinguish individuals who have high dependency needs and urged policymakers to focus on the unique needs of this group, which represents approximately 30% of people with autism [2]. The goal of this label is to recognize the uniqueness of these individuals and that their support needs and outcomes are different from those of others. There is also evidence that the underlying biology of those with “profound autism” is different [3-5].

Amy and Jonah Lutz

The term “profound autism” is intended to describe autistic people who are likely to need 24-hour support throughout their lives. The report states that useful categories like “profound autism” can bring attention to the different needs of different people. In fact, the goal of the new term “profound autism” is to equip parents, service providers and the public with the language necessary to ensure that each individual with autism receives the accommodations and interventions they need [2]. These can vary greatly. Some of those diagnosed with autism engage in destructive or self-injurious behavior. Some have intellectual disabilities; others are star students. Some are unable to perform basic tasks like brushing their teeth and getting dressed; others can live fully independent lives. Autism is a disorder in which no two diagnoses look the same, and terms like “profound autism” help distinguish needs.

CDC Reports Autism Prevalence Continues to Rise

The CDC ADDM Network released updated autism prevalence data this year, announcing that one in 44 8-year-old children is diagnosed with autism [1]. This is an increase from the one in 54 number for 8-year-olds reported in March 2020. Using a slightly different but validated methodology from previous years [6], new CDC data confirm that autism prevalence and diagnoses have gone up steadily in the past five years. 

The CDC information makes it clear that we are getting better at diagnosing autism and identifying it earlier, which is encouraging because research has consistently shown the value of early intervention. However, more than 58% of children identified had intellectual disability or borderline intellectual disability. This cohort of children with profound autism warrants more attention from policymakers and service providers, as their needs are dramatically different from those with milder forms of autism. While the prevalence went up, the demographics across race, ethnicity and cognitive ability stayed pretty stable from the last prevalence estimate [1]. This information calls for further understanding of the nature of this rise beyond just diagnostic practices, including alerting pediatricians and supporting further and more expanded studies of gene x environment interactions [7]. One example would be the differential influence of toxic chemicals on cells with genetic mutations associated with autism, which revealed a susceptibility to toxic chemical exposures with cells with autism-related variation [8].

Reaching the Hard to Reach

Those from racially and ethnically diverse backgrounds have long been recognized as being diagnosed later, if at all. There are years and years of CDC data which show that while this trend is improving, it is still problematic in terms of equitable access to services. It also produces another problem that perpetuates the underdiagnosis and lack of access: not enough families from racially and ethnically diverse communities are being studied in research, which means most research findings apply to white communities, not the communities represented in the real world who need help [9]. A few studies this year specifically targeted those from either Hispanic [10] or Black and Hispanic families [11, 12]and found their needs were different or developed tools for their particular culture. However, in a commentary this year, researchers highlighted the need to engage diverse communities at the beginning of the research question, to ensure they have a voice at each step, and to possibly adapt the study question to their particular circumstances [9].  

Unfortunately, not all of the challenges facing underserved communities are the same. For example, those who are minimally verbal and have intellectual disabilities are left out of research for logistical reasons, or, in many cases, the intellectual and verbal abilities of individuals with more profound autism are not reported at all [13]. Those with intellectual disability are usually recognized more often, but there were only four intervention studies published in PubMed in 2021 that specifically included a group of autistic people with intellectual disability.  

Understanding Autism in Females 

While females with ASD have not typically been placed in the “underdiagnosed” category, they certainly are a group that has been underserved by scientific research. Because of the 4:1 difference in prevalence for males to females, autism research studies typically include four times fewer females, which means findings are not generalizable to females [14-17].

In the last year, there have been several studies showing that the challenges faced by autistic females are different from those facing autistic males. For example, a phenomenon called “passing as autistic” (otherwise known as masking) — where someone with autism tries to hide their symptoms to pass in social situations — was found to be elevated in females [18, 19]. Comorbidities like epilepsy have been shown to be higher in females [20], and baseline brain activity in autistic youth is different based on biological sex [16]. While the female brain is clearly different from the male brain, even in autism, the lack of females included in research has also significantly impaired our understanding of brain differences between males and females with ASD for more personalized support [21].

Because of the disparity in diagnosis between males and females, there are very few studies that can examine the effects of sex and gender on diagnosis, making consistent findings across sex/gender almost impossible, but it has been done [22]. What has been learned is that the striatum (and genes controlling striatal development) may play a role in autism symptoms in females. This has not been identified as an area of interest in males [23]. Research also shows that females have a higher burden of variants in the oxytocin receptor gene, which affect them differently than males with ASD [15], and differential links between brain activity and autism features [16], supporting something called the “female protective effect.” This protective effect might be genetic or might occur through the estrogen pathway [24, 25]. Finally, while the entire autism community has a higher than expected rate of gender dysphoria, it seems to affect girls more than boys [26]. Behavioral features are also slightly different, which complicates diagnosis [17]. Together, these results demonstrate that scientific findings, including use of biomarkers for diagnosis, which are seen in males may be different than those seen in females. Scientists need to ensure that enough females are recruited into research studies and better understand the difference between females and males to ensure that scientific findings generalize to care in the community.

The Pandemic Is Still Causing Problems

Almost two years into the pandemic, scientists are still working to understand the long-term effects on people with autism. Studies focused on increases in challenging behaviors and loneliness in autistic youth and adults [27, 28], and also on understanding the mental health challenges due to prolonged social distancing guidelines, including multiple waves of lockdowns [29-32]. Additionally, studies show that families with autism are disproportionately affected by job losses and food insecurity [33, 34]. And while telehealth-based diagnosis and services are becoming more common as a result of social distancing, families of younger children who need direct behavioral supports remain the least satisfied [35, 36], a trend continuing from 2020 [37]. The challenges associated with the pandemic are not limited to those with a diagnosis and their families. Scientists who dedicate their lives to help those on the spectrum have struggled with some of the same issues that families with autism have [38], including mental health and childcare challenges. This compounds the problem of developing scientific discoveries and delivering them to the community.

New Technologies for Diagnosis and Treatment

Child enrolled in the Duke study watching the video

With the pandemic came the use of remote and virtual technologies, not just to identify and diagnose autism, but also to provide supports and services. As the pandemic continues, researchers are studying what works and what doesn’t, especially in families who say that they found telehealth more accessible and beneficial [35]. Remote assessments have changed the nature of how autism is diagnosed, with scientists emphasizing the need for use of good clinical judgment rather than reliance on singular instruments [39]. Telehealth assessments have meant that diagnosis is now more accessible to those in remote areas who are traditionally underdiagnosed. Another bright spot is that the pandemic has allowed children to be observed remotely in their home environment, which may significantly enhance the ability of clinicians to observe early markers of autism [39, 40]. New technologies that enable videotaping via remote camera — for later review by clinicians — are also gaining traction. Recently, Cognoa received FDA marketing authorization for its new remote videotaping tool, CanvasDx. Duke University also published data a tool that plays different movies and visual scenes on an iPad and allows clinicians to determine the likelihood of an autism diagnosis by examining where the children looked in the scene [41], as past research has shown that children with autism are more likely to look at objects and less likely to look at social stimuli. In both cases, these recordings, together with standard early screening methods, can be analyzed to help facilitate diagnosis. A 2021 review found these mobile digital technologies to be promising in diagnosis [42].

Beyond just supporting diagnosis, mobile technology may be used to improve cognitive and social skills across the lifespan [43]. A recent systematic review indicated that these mobile interventions were particularly helpful in targeting practical skills [43, 44]. They can also be used to predict responses to stressful situations and abnormal sensory arousal [45]. Finally, robots and videogames on devices are showing promise in helping kids with autism develop social skills [46, 47]. While these technologies may have benefits beyond the pandemic and can alleviate some of the burden of traveling to multiple appointments, they will not replace the need for children to be diagnosed and/or receive therapy from trained, in-person clinicians [39, 48].

Intervention Before Diagnosis

A few years ago, scientists in the UK began studying the possibility of promoting skills in parents as a way to mitigate autism symptoms in infants [49]. By working with parents in their home and promoting social and communication skills through activities like reading and play, autism severity scores improved. This year, a group in Australia conducted its own randomized controlled study starting at 9-12 months — before a diagnosis can be made — to provide support to parents and offer video feedback on supporting language and social development in their infants. This study showed that support of infant social and communication skills measured at one year led to a reduction of autism severity scores at 24 months, with these improvements being maintained long after the end of the intervention period [50]. Factors like caregiver interaction and adjusting the environment to promote learning in these toddlers are key ingredients to changing developmental trajectory [51, 52]. New tools are also allowing earlier and earlier detection of markers of ASD, with some evidence that it can be done as early as 12 months of age [53]. These findings represent the potential benefits of decades worth of early detection work and operationalize a methodology for parents to learn to promote social and communication skills in their infants.

However, the need for earlier detection and diagnosis of autism remains a priority within autism research and the autism community. This year, researchers identified changes in the grey matter (cell bodies) and white matter (the neuron branches) in children as young as 12 months of age [54] who go on to be diagnosed with autism. Changes in brain activity, while not a diagnostic marker, can be seen in infants as young as 3 months of age [55] and can prove helpful in diagnosis at 6 months [56]. In addition, some behavioral signs can also trigger preemptive intervention. Groups led by UC Davis demonstrated both declining gaze to faces, which was replicated in two different cohorts [57], and unusual inspection of objects at 9 months, which predicts reduced social engagement at 12 months in those who later develop an autism diagnosis [58]. In addition, vocalizations (or intents to communicate) were lower in children as young as 12 months [59]. Together, while not diagnostic, some of these early markers and signs can facilitate entry into preemptive interventions, which can produce skills in caregivers and infants that change the developmental trajectory. Finally, there is an erroneous perception that parents believe that all of autism is “bad” and needs to “be eliminated.” In fact, when they were specifically asked, parents identified characteristics like love, kindness, humor, humanity and resilience that they value and appreciate in their children [60].

Autism and Aging

There has traditionally been a lack of understanding as to what happens to autistic adults as they enter their golden years. This year, Drexel University utilized Medicaid data to examine the risk of dementia in those with autism and found that those with ASD were 2.6 times more likely to be diagnosed with dementia compared to the general population [61]. This has profound impacts on planning for elderly relatives with ASD and developing interventions that may stunt the development of dementia in this population.

Understanding the Role of Genetics in Autism 

Traditionally, genetic variation association with autism has been bucketed as “rare” mutations and “common” mutations. Rare mutations on genes typically lead to deleterious effects such as seizures or intellectual disability [62]. Sometimes, like in the case of BRCA (breast cancer gene), they can be fatal. Common mutations are seen in lots of people, not just those with autism, but the human body can tolerate many common mutations with no major effects. However, if the genetic variant is found in an autism risk gene, for example, then it can dispose someone to an autism diagnosis [62]. Mutations found in autism risk genes — including those associated with cell adhesion, neuron-glia interactions and synapse formation — are most likely to be common variants involved in autism [3].

This year, sequencing of more than 800 people with an autism diagnosis revealed that 27% had evidence of a rare genetic mutation, mostly in one of the 102 genes identified in 2020 as being relevant for ASD [3, 63]. Presence of a mutation of one of these genes also results in a distinct set of behavioral features early in life that is different from those without a rare mutation [64]. Interestingly, instead of advancing the traditional “rare vs. common variation debate,” scientists this year learned that even in those who have a rare genetic mutation, there is also a high burden of common variation [63]. Scientists found that both rare and common genetic risks contribute to autism susceptibility, and that the dual risks may increase the likelihood of an autism diagnosis [63]. These findings make things complicated for genetic counselors who need to assess all the factors and communicate to families whether or not a particular rare variant is causative. In addition, sequencing technologies are revealing more and more genes that are relevant to ASD but incredibly rare; in fact, they are likely to be part of a multi-factorial cause of individual cases of ASD [65]. Finally, we’ve learned that common variation influences not only core autism symptoms, but also psychiatric comorbidities [66].

A Family with ADNP Syndrome

Studying Rare Genetic Syndromes Opens the Door to New Therapeutics

The use of induced pluripotent stem cells, or iPSCs, to study the brain on a cellular level has so far been focused on rare genetic diseases associated with autism, like Dup15q syndrome, CNTNAP2 and CDKL5 disorder. However, while the genetic targets may be more specific than in idiopathic autism, there are also converging mechanisms of disrupted connectivity in the brain that make these single gene disorders useful in understanding the neurobiology of ASD [67-71].

In addition to some shared (and some distinct) neurobiology across autism with a known genetic cause, there is overlap on the basic neurobiology level in terms of cortical thickness [72] and G-protein-coupled-receptors across different psychiatric disorders, including autism [73]. Some of these rare genetic syndromes have been responsive to targeted gene therapy, which opens up the door for them to be used in idiopathic autism if proven safe and effective in large groups of people with neurodevelopmental disorders.

Remember Glial Cells? They May Play a Bigger Role Than We Thought.

Photograph of a glial cell

One brain cell type that is experiencing renewed interest in autism is glial cells, particularly with regard to sex differences in ASD. Glial cells are found in the brain, but they do not communicate with each other. Rather, they provide insulation to neurons that do communicate via electrical impulses. Traditionally, because they were not thought to be communication cells, they were not considered critical for study. But recent evidence has shown that there may be different subtypes of autism defined by the upregulation of genes that control glial cells [74]. Gene expression in these microglia may also contribute to differences in brain structure [75]. In addition, the direct study of brain tissue has shown that in certain layers of the cortex, astrocytes — a type of glial cell — are decreased [76]. Taken together, the dysregulation of glial cells may contribute to different cell processes, brain structure, functional changes and psychiatric syndromes associated with autism.

What Can We Do to Improve Outcomes of Those with Autism?

New research shared this year focused on improving outcomes. First, we learned that the presence of a brother or sister not on the autism spectrum improves adaptive behavior across the lifespan for those with an autism diagnosis [77]. On the other hand, parental stress in early life and early adverse events can make outcomes worse [78].

Research continues to show that, especially in the early years, parents and caregivers can play a critical and life-changing role in their child’s development. For young children, Naturalistic Developmental Behavioral Interventions (NDBIs), which are child-led and utilize behavioral principles delivered in the home, are most helpful [79, 80] and now may be delivered via telehealth [81]. One good thing to come out of the pandemic is the availability of remote access to video series, including but not limited to the Autism Navigator, which can help parents identify early signs and deliver these interventions to their young children from home [82]. The literature on the efficacy of these NDBIs grows greater every year.  However, not everyone has access to early interventions or even expert clinicians. To address the disparities seen across the world and across different comorbidities and other individual factors, the Lancet Commission report called for a stepped-care and personalized health model for interventions [2]. This includes provisions not just for individual and family factors, but also for accessibility and cost. These recommendations on how different groups approach care are essential to obtain a more specialized approach to helping families and individuals on the spectrum lead happy, healthy and successful lives. Unfortunately, some promising therapeutics like oxytocin failed to meet the cut of significantly helping those with ASD [83].  Other organ systems besides the brain, including the gastrointestinal system, continue to be investigated to help alleviate co-occurring medical conditions.  Many families turn to things like probiotics to help with issues like constipation and diarrhea, however, new evidence suggests that the microbiome is more influenced by diet than autism itself [84] calling into question the validity of probiotic use for GI problems.

In Memoriam

Sir Michael Rutter

Sadly, the autism community lost three scientists this year who have made enormous contributions to the field and changed the way people think about autism. Sir Michael Rutter, known as the Father of Child Psychiatry, a professor at the Institute of Psychiatry at Kings College London, was one of the most influential psychiatric scientists of the past 50 years. He was one of the first researchers to study autism, publishing a study of autistic twins in 1977. He helped dispel the myth that parenting styles influenced an autism diagnosis and brought scientific rigor to understanding autism. He helped develop the two gold standard tools for diagnosis: the ADI-R and the ADOS. His commitment to helping children and families was not limited to autism, however; he helped families with a number of psychiatric conditions and behavioral issues.

Li-Ching Lee

Li-Ching Lee, who served as the Associate Director for Global Autism at the Wendy Klag Center of Johns Hopkins School of Public Health, was one of the reasons why autism is recognized as a global condition. She focused her research on identifying and helping families with autism across the world, calling it a “human rights issue” when the needs of families in under-resourced countries were ignored. She also worked tirelessly to understand autism in the US, working closely with the CDC to understand who and where people were being diagnosed and how they could be helped. Beyond being an amazing scientist, her fellow students have called her an amazing friend, mentor and teacher who went above and beyond to help her students be successful while helping families.

George C. Wagner

Finally, George C. Wagner of Rutgers University was one of the first behavioral neuroscientists to try to develop a behavioral model of ASD in rodents at a time when scientists were starting to try to understand how to recapitulate the features in model systems. His work helped define how autism should be studied in animals, and how it overlapped or was different than other psychiatric disorders. He based his models on the core features rather than particular behaviors, including delay of skill development, plateauing of skills and possible regression of skills. This helped fundamentally change the field of animal models of ASD. Many of his students (including ASF CSO Alycia Halladay) went on to help families with ASD following training.

All three of these amazing scientists will be remembered not just for their contributions to science, but for their training of early career researchers who continue to make an impact.

The Last Word

Over the last 40 years, autism has moved from a categorial (yes/no) diagnosis to a dimensional diagnosis [85], taking into account the complexity and differences of features across the lifespan. While there may be core features of ASD that are common across the spectrum, people with autism, just like people without autism, are all different and need to be recognized as such [2, 86].  

While this summary captures what happened in 2021, we urge you to read more about how science has changed the way families with autism have been perceived, treated and helped over the past 40 years. The Journal of Autism and Developmental Disorderspublished a series that you can look through here, and Dr. Giacomo Vivanti shared his long-term perspective on the November 14 ASF podcast here: https://asfpodcast.org/archives/1258. In fact, one of the best ways to keep up with changes in autism science is to subscribe to the ASF podcast on Spotify, Apple Podcasts or Google Podcasts.

You can make a difference

These research findings and important discoveries were thanks to the thousands of families and autistic individuals who participated in research studies over the past few years. As you can read from this report, your contributions make an impact. There are other research opportunities and as we continue to live in the pandemic, many more of them are available in your own home with interaction with professionals to support you. You can read more about them here. Finally, there are ways to learn about credible science outside social media, which also includes SpectrumNews and the Autism BrainNet. Just signing up for more information on the Autism BrainNet gets you regular information about what the brains of autistic people look like and how they are different from those without a diagnosis.

References

1.         Maenner, M.J., et al., Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years – Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2018. MMWR Surveill Summ, 2021. 70(11): p. 1-16.

2.         Lord, C., et al., The Lancet Commission on the future of care and clinical research in autism. The Lancet, 2021.

3.         Mahjani, B., et al., Prevalence and phenotypic impact of rare potentially damaging variants in autism spectrum disorder. Mol Autism, 2021. 12(1): p. 65.

4.         Havdahl, A., et al., Age of walking and intellectual ability in autism spectrum disorder and other neurodevelopmental disorders: a population-based study. J Child Psychol Psychiatry, 2021. 62(9): p. 1070-1078.

5.         Reardon, A.M., et al., Subtyping Autism Spectrum Disorder Via Joint Modeling of Clinical and Connectomic Profiles. Brain Connect, 2021.

6.         Maenner, M.J., et al., Comparison of 2 Case Definitions for Ascertaining the Prevalence of Autism Spectrum Disorder Among 8-Year-Old Children. Am J Epidemiol, 2021. 190(10): p. 2198-2207.

7.         Volk, H.E., et al., Considering Toxic Chemicals in the Etiology of Autism. Pediatrics, 2021.

8.         Modafferi, S., et al., Gene-Environment Interactions in Developmental Neurotoxicity: a Case Study of Synergy between Chlorpyrifos and CHD8 Knockout in Human BrainSpheres. Environ Health Perspect, 2021. 129(7): p. 77001.

9.         Maye, M., et al., Biases, Barriers, and Possible Solutions: Steps Towards Addressing Autism Researchers Under-Engagement with Racially, Ethnically, and Socioeconomically Diverse Communities. J Autism Dev Disord, 2021.

10.       Harris, J.F., et al., Validation of the Developmental Check-In Tool for Low-Literacy Autism Screening.Pediatrics, 2021. 147(1).

11.       Azad, G., et al., The influence of race on parental beliefs and concerns during an autism diagnosis: A mixed-method analysis. Autism, 2021: p. 13623613211044345.

12.       Wagner, S., I.L. Rubin, and J.S. Singh, Underserved and Undermeasured: a Mixed-Method Analysis of Family-Centered Care and Care Coordination for Low-Income Minority Families of Children with Autism Spectrum Disorder. J Racial Ethn Health Disparities, 2021.

13.       Thurm, A., et al., Making Research Possible: Barriers and Solutions For Those With ASD and ID. J Autism Dev Disord, 2021.

14.       Skaletski, E.C., et al., Quality-of-Life Discrepancies Among Autistic Adolescents and Adults: A Rapid Review. Am J Occup Ther, 2021. 75(3).

15.       Lawrence, K.E., et al., Impact of autism genetic risk on brain connectivity: a mechanism for the female protective effect. Brain, 2021.

16.       Neuhaus, E., et al., Resting state EEG in youth with ASD: age, sex, and relation to phenotype. J Neurodev Disord, 2021. 13(1): p. 33.

17.       Dillon, E.F., et al., Sex Differences in Autism: Examining Intrinsic and Extrinsic Factors in Children and Adolescents Enrolled in a National ASD Cohort. J Autism Dev Disord, 2021.

18.       Libsack, E.J., et al., A Systematic Review of Passing as Non-autistic in Autism Spectrum Disorder. Clin Child Fam Psychol Rev, 2021. 24(4): p. 783-812.

19.       Cook, J., et al., Camouflaging in autism: A systematic review. Clin Psychol Rev, 2021. 89: p. 102080.

20.       Bougeard, C., et al., Prevalence of Autism Spectrum Disorder and Co-morbidities in Children and Adolescents: A Systematic Literature Review. Front Psychiatry, 2021. 12: p. 744709.

21.       Mo, K., et al., Sex/gender differences in the human autistic brains: A systematic review of 20 years of neuroimaging research. Neuroimage Clin, 2021. 32: p. 102811.

22.       Floris, D.L., et al., Towards robust and replicable sex differences in the intrinsic brain function of autism. Mol Autism, 2021. 12(1): p. 19.

23.       Jack, A., et al., A neurogenetic analysis of female autism. Brain, 2021. 144(6): p. 1911-1926.

24.       Enriquez, K.D., A.R. Gupta, and E.J. Hoffman, Signaling Pathways and Sex Differential Processes in Autism Spectrum Disorder. Front Psychiatry, 2021. 12: p. 716673.

25.       Willsey, H.R., et al., Parallel in vivo analysis of large-effect autism genes implicates cortical neurogenesis and estrogen in risk and resilience. Neuron, 2021. 109(5): p. 788-804 e8.

26.       Brunissen, L., et al., Sex Differences in Gender-Diverse Expressions and Identities among Youth with Autism Spectrum Disorder. Autism Res, 2021. 14(1): p. 143-155.

27.       Hards, E., et al., Loneliness and mental health in children and adolescents with pre-existing mental health problems: A rapid systematic review. Br J Clin Psychol, 2021.

28.       Kalb, L.G., et al., Psychological distress among caregivers raising a child with autism spectrum disorder during the COVID-19 pandemic. Autism Res, 2021. 14(10): p. 2183-2188.

29.       Young, E., et al., Caregiver burnout, gaps in care, and COVID-19: Effects on families of youth with autism and intellectual disability. Can Fam Physician, 2021. 67(7): p. 506-508.

30.       Polonyiova, K., et al., Comparing the impact of the first and second wave of COVID-19 lockdown on Slovak families with typically developing children and children with autism spectrum disorder. Autism, 2021: p. 13623613211051480.

31.       Siracusano, M., et al., Parental Stress and Disability in Offspring: A Snapshot during the COVID-19 Pandemic. Brain Sci, 2021. 11(8).

32.       Lois Mosquera, M., et al., Autistic adults’ personal experiences of navigating a social world prior to and during Covid-19 lockdown in Spain. Res Dev Disabil, 2021. 117: p. 104057.

33.       Karpur, A., et al., Food insecurity in the households of children with autism spectrum disorders and intellectual disabilities in the United States: Analysis of the National Survey of Children’s Health Data 2016-2018. Autism, 2021. 25(8): p. 2400-2411.

34.       Panjwani, A.A., R.L. Bailey, and B.L. Kelleher, COVID-19 and Food-Related Outcomes in Children with Autism Spectrum Disorder: Disparities by Income and Food Security Status. Curr Dev Nutr, 2021. 5(9): p. nzab112.

35.       Bhat, A., Analysis of the SPARK study COVID-19 parent survey: Early impact of the pandemic on access to services, child/parent mental health, and benefits of online services. Autism Res, 2021. 14(11): p. 2454-2470.

36.       Corona, L.L., et al., Utilization of telemedicine to support caregivers of young children with ASD and their Part C service providers: a comparison of intervention outcomes across three models of service delivery. J Neurodev Disord, 2021. 13(1): p. 38.

37.       Jeste, S., et al., Changes in access to educational and healthcare services for individuals with intellectual and developmental disabilities during COVID-19 restrictions. J Intellect Disabil Res, 2020.

38.       Harrop, C., et al., A lost generation? The impact of the COVID-19 pandemic on early career ASD researchers. Autism Res, 2021. 14(6): p. 1078-1087.

39.       Zwaigenbaum, L., et al., Rethinking autism spectrum disorder assessment for children during COVID-19 and beyond. Autism Res, 2021. 14(11): p. 2251-2259.

40.       Delehanty, A.D. and A.M. Wetherby, Rate of Communicative Gestures and Developmental Outcomes in Toddlers With and Without Autism Spectrum Disorder During a Home Observation. Am J Speech Lang Pathol, 2021. 30(2): p. 649-662.

41.       Chang, Z., et al., Computational Methods to Measure Patterns of Gaze in Toddlers With Autism Spectrum Disorder. JAMA Pediatr, 2021. 175(8): p. 827-836.

42.       Desideri, L., P. Perez-Fuster, and G. Herrera, Information and Communication Technologies to Support Early Screening of Autism Spectrum Disorder: A Systematic Review. Children (Basel), 2021. 8(2).

43.       de Nocker, Y.L. and C.K. Toolan, Using Telehealth to Provide Interventions for Children with ASD: a Systematic Review. Rev J Autism Dev Disord, 2021: p. 1-31.

44.       Leung, P.W.S., et al., Effectiveness of Using Mobile Technology to Improve Cognitive and Social Skills Among Individuals With Autism Spectrum Disorder: Systematic Literature Review. JMIR Ment Health, 2021. 8(9): p. e20892.

45.       Nuske, H.J., et al., Evaluating commercially available wireless cardiovascular monitors for measuring and transmitting real-time physiological responses in children with autism. Autism Res, 2021.

46.       Penev, Y., et al., A Mobile Game Platform for Improving Social Communication in Children with Autism: A Feasibility Study. Appl Clin Inform, 2021. 12(5): p. 1030-1040.

47.       Riches, S., et al., Therapeutic engagement in robot-assisted psychological interventions: A systematic review. Clin Psychol Psychother, 2021.

48.       Nuske, H.J. and D.S. Mandell, Digital health should augment (not replace) autism treatment providers.Autism, 2021. 25(7): p. 1825-1827.

49.       Green, J., et al., Randomised trial of a parent-mediated intervention for infants at high risk for autism: longitudinal outcomes to age 3 years. J Child Psychol Psychiatry, 2017. 58(12): p. 1330-1340.

50.       Whitehouse, A.J.O., et al., Effect of Preemptive Intervention on Developmental Outcomes Among Infants Showing Early Signs of Autism: A Randomized Clinical Trial of Outcomes to Diagnosis. JAMA Pediatr, 2021. 175(11): p. e213298.

51.       Davis, P.H., et al., Caregiver responsiveness as a mechanism to improve social communication in toddlers: Secondary analysis of a randomized controlled trial. Autism Res, 2021.

52.       Grzadzinski, R., et al., Pre-symptomatic intervention for autism spectrum disorder (ASD): defining a research agenda. J Neurodev Disord, 2021. 13(1): p. 49.

53.       Wetherby, A.M., et al., The Early Screening for Autism and Communication Disorders: Field-testing an autism-specific screening tool for children 12 to 36 months of age. Autism, 2021. 25(7): p. 2112-2123.

54.       Godel, M., et al., Altered Gray-White Matter Boundary Contrast in Toddlers at Risk for Autism Relates to Later Diagnosis of Autism Spectrum Disorder. Front Neurosci, 2021. 15: p. 669194.

55.       Tran, X.A., et al., Functional connectivity during language processing in 3-month-old infants at familial risk for autism spectrum disorder. Eur J Neurosci, 2021. 53(5): p. 1621-1637.

56.       Peck, F.C., et al., Prediction of autism spectrum disorder diagnosis using nonlinear measures of language-related EEG at 6 and 12 months. J Neurodev Disord, 2021. 13(1): p. 57.

57.       Gangi, D.N., et al., Declining Gaze to Faces in Infants Developing Autism Spectrum Disorder: Evidence From Two Independent Cohorts. Child Dev, 2021. 92(3): p. e285-e295.

58.       Miller, M., et al., Repetitive behavior with objects in infants developing autism predicts diagnosis and later social behavior as early as 9 months. J Abnorm Psychol, 2021. 130(6): p. 665-675.

59.       Plate, S., et al., Infant vocalizing and phenotypic outcomes in autism: Evidence from the first 2 years. Child Dev, 2021.

60.       Cost, K.T., et al., “Best Things”: Parents Describe Their Children with Autism Spectrum Disorder Over Time.J Autism Dev Disord, 2021. 51(12): p. 4560-4574.

61.       Vivanti, G., et al., The prevalence and incidence of early-onset dementia among adults with autism spectrum disorder. Autism Res, 2021. 14(10): p. 2189-2199.

62.       Gaugler, T., et al., Most genetic risk for autism resides with common variation. Nat Genet, 2014. 46(8): p. 881-5.

63.       Klei, L., et al., How rare and common risk variation jointly affect liability for autism spectrum disorder. Mol Autism, 2021. 12(1): p. 66.

64.       Wickstrom, J., et al., Patterns of delay in early gross motor and expressive language milestone attainment in probands with genetic conditions versus idiopathic ASD from SFARI registries. J Child Psychol Psychiatry, 2021. 62(11): p. 1297-1307.

65.       Wilfert, A.B., et al., Recent ultra-rare inherited variants implicate new autism candidate risk genes. Nat Genet, 2021. 53(8): p. 1125-1134.

66.       Rodriguez-Gomez, D.A., et al., A systematic review of common genetic variation and biological pathways in autism spectrum disorder. BMC Neurosci, 2021. 22(1): p. 60.

67.       de Jong, J.O., et al., Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder. Nat Commun, 2021. 12(1): p. 4087.

68.       Jacot-Descombes, S., et al., Altered synaptic ultrastructure in the prefrontal cortex of Shank3-deficient rats.Mol Autism, 2020. 11(1): p. 89.

69.       Colombo, E., et al., The K63 deubiquitinase CYLD modulates autism-like behaviors and hippocampal plasticity by regulating autophagy and mTOR signaling. Proc Natl Acad Sci U S A, 2021. 118(47).

70.       Victor, A.K., et al., Molecular Changes in Prader-Willi Syndrome Neurons Reveals Clues About Increased Autism Susceptibility. Front Mol Neurosci, 2021. 14: p. 747855.

71.       Vasic, V., et al., Translating the Role of mTOR- and RAS-Associated Signalopathies in Autism Spectrum Disorder: Models, Mechanisms and Treatment. Genes (Basel), 2021. 12(11).

72.       Writing Committee for the Attention-Deficit/Hyperactivity, D., et al., Virtual Histology of Cortical Thickness and Shared Neurobiology in 6 Psychiatric Disorders. JAMA Psychiatry, 2021. 78(1): p. 47-63.

73.       Monfared, R.V., et al., Transcriptome Profiling of Dysregulated GPCRs Reveals Overlapping Patterns across Psychiatric Disorders and Age-Disease Interactions. Cells, 2021. 10(11): p. 2967.

74.       Nassir, N., et al., Single-cell transcriptome identifies molecular subtype of autism spectrum disorder impacted by de novo loss-of-function variants regulating glial cells. Hum Genomics, 2021. 15(1): p. 68.

75.       Takanezawa, Y., et al., Microglial ASD-related genes are involved in oligodendrocyte differentiation. Sci Rep, 2021. 11(1): p. 17825.

76.       Falcone, C., et al., Neuronal and glial cell number is altered in a cortical layer-specific manner in autism.Autism, 2021. 25(8): p. 2238-2253.

77.       Rosen, N.E., J.B. McCauley, and C. Lord, Influence of siblings on adaptive behavior trajectories in autism spectrum disorder. Autism, 2021: p. 13623613211024096.

78.       Hollocks, M.J., et al., The association of adverse life events and parental mental health with emotional and behavioral outcomes in young adults with autism spectrum disorder. Autism Res, 2021. 14(8): p. 1724-1735.

79.       Schuck, R.K., et al., Neurodiversity and Autism Intervention: Reconciling Perspectives Through a Naturalistic Developmental Behavioral Intervention Framework. J Autism Dev Disord, 2021.

80.       Waddington, H., et al., The effects of JASPER intervention for children with autism spectrum disorder: A systematic review. Autism, 2021. 25(8): p. 2370-2385.

81.       Dai, Y.G., et al., Development and Acceptability of a New Program for Caregivers of Children with Autism Spectrum Disorder: Online Parent Training in Early Behavioral Intervention. J Autism Dev Disord, 2021. 51(11): p. 4166-4185.

82.       Wainer, A.L., et al., Examining a stepped-care telehealth program for parents of young children with autism: a proof-of-concept trial. Mol Autism, 2021. 12(1): p. 32.

83.       Sikich, L., et al., Intranasal Oxytocin in Children and Adolescents with Autism Spectrum Disorder. N Engl J Med, 2021. 385(16): p. 1462-1473.

84.       Yap, C.X., et al., Autism-related dietary preferences mediate autism-gut microbiome associations. Cell, 2021. 184(24): p. 5916-5931 e17.

85.       Rosen, N.E., C. Lord, and F.R. Volkmar, The Diagnosis of Autism: From Kanner to DSM-III to DSM-5 and Beyond. J Autism Dev Disord, 2021. 51(12): p. 4253-4270.

86.       Lord, C. and S.L. Bishop, Let’s Be Clear That “Autism Spectrum Disorder Symptoms” Are Not Always Related to Autism Spectrum Disorder. Am J Psychiatry, 2021. 178(8): p. 680-682.

Stanford Studies Smartphones in ASD

Children with autism demonstrate social skill deficits that often include difficulty recognizing emotions. Differences in recognizing faces can be observed in infants as young as 3 months old, and infants typically begin to recognize emotional expressions at 6 months old. Recognizing emotions is important for responding to social cues and also for recognizing and regulating one’s own emotions. Hence, a common aspect of early behavioral therapy for children with autism includes practicing emotion recognition. 

While early behavioral therapy has shown to drastically improve outcomes for children with autism, many families experience difficulty  getting  access to therapy  due to long wait times after a diagnosis and/or living far away from a site or clinician that provides these interventions. In an effort to make aspects of therapy more accessible, our team at Stanford developed a smartphone app that incorporates common elements of therapy.  Our app  was designed  to deliver a fun game-based intervention while collecting data useful for measuring progress and outcomes from the comfort of home. To see if this app can help children improve emotion recognition and social skills, we are conducting a randomized controlled trial among children with autism 3-12 years old. Read more about the app and study below!

The app we designed is for Android and iPhone smartphone users. To play, the parent/guardian holds the phone on their forehead with the phone screen facing the child and displaying an image based prompt ( i.e. Dinosaur, Happy face, Skier, etc.) for the child to act out and for the parent to guess (similar to the game Heads Up! or HedBanz). 

The entire charades play session is audio and video recorded by the phone’s front camera and at the end of a single 90 second session, users (parents) are asked to share or delete the video. Sharing the video sends the encrypted video securely to Stanford servers so that it can be analyzed by our research team. 

What is involved in the study and what we expect to find: Parents who enroll in the study will be asked to complete 2 questionnaires online. At the end of the questionnaires, parent and child will complete a task where the child is asked to label different animated GIFs with an emotional label (happy, sad, angry, etc.). 

After completing these tasks, the study team will randomly assign  families to one of two groups. This means that half of participating families will be asked to download and play the app for 4 weeks, and the other half of families will wait to download the app until week 8. Both groups will repeat additional questionnaires at week 4 and week 8. 

All participants will receive a $50 gift card for participating in the study for 4 weeks and an additional $20 for completing the additional questionnaires after 8 weeks of being in the study. 

We expect to see greater improvements in social skills as measured by the Vineland Adaptive Behavior Scale, among participants who use the app for the 4 weeks compared to those who are waiting to use the app. 

We hope the study will show that (1) this smartphone, game based intervention delivered by a parent can be just as effective as traditional therapy, and that (2) the smartphone game system can produce data for measuring progress and speed up traditional assessment procedures for diagnosis and service eligibility screening.

What can happen if the study works – will it be available commercially? In schools? If the study works, we plan to find ways to make the app available commercially. This could be accomplished by seeking FDA approval of the app so it can become an insurance reimbursed product or service, licensing the app to schools so they can use the app during daily programming, and/or make the app available on the Apple or Google Play store!

Interested in joining?  

Start by completing the initial questionnaire at: guesswhatstudy.stanford.edu   

ClinicalTrials.gov Registration: NCT04739982

Questions? 

Phone: 650-497-9214

Email: smartphonestudy@stanford.edu  

Lab Website: https://wall-lab.stanford.edu

Alleviating Your COVID-19 Vaccine Fears

Worries about the COVID-19 vaccine have percolated in the autism community since the first shots were administered late last year, and it’s an issue I tackle head-on in the latest ASF weekly science podcast, titled “Why Would You Not Get Vaccinated?

Although it’s understandable that families facing ASD might feel nervous about the COVID-19 vaccine because it feels so new, the reality is that the vaccines are safe, effective and rooted in longstanding science.

As I explain in the podcast, it’s especially important for adults and children with autism to get vaccinated when able because multiple studies show that people with autism and intellectual disabilities are at a higher risk of death from COVID-19 compared to people facing other preexisting conditions. Furthermore, it’s crucial that parents of kids with autism get vaccinated to lower the risk of infecting a child who is not yet eligible to receive a vaccine.

Dr. Pam Feliciano, the scientific director of SPARK (Simons Foundation Powering Autism Research through Knowledge), joined me for the first half of the podcast and speaks about vaccine hesitancy and how to alleviate fears. She notes that the data on vaccine safety is “really strong,” and the vaccines have now been administered to millions of people who are now able to return to pre-pandemic activities more quickly than those who aren’t.


The bottom line, as I emphasize in the podcast and in this recent Everyday Health article titled “5 Things People With Autism and Their Caregivers Should Know About COVID-19 Vaccines,” is this: “The science is clear: you are better off vaccinated than not vaccinated.”

Guggenheim For All

by Melanie Adsit, Guggenheim For All

The Guggenheim Museum is committed to creating an accessible experience for all patrons and has developed several innovative programs to provide multiple points of access for diverse constituents. Our ongoing goal is to make the Guggenheim a welcoming place of creativity, respite, learning, and community for all visitors. 

What is the Guggenheim doing for families with ASD?

Guggenheim for All (GFA), which began as a pilot program with Brooklyn Autism Center in 2010, has become a central part of the Guggenheim Museum’s programming. Guggenheim for All facilitates unique museum experiences for people with autism spectrum disorders (ASD) through school programs, family programs, visitor resources, and career development opportunities. School and family programs led by specially trained educators use art activities to help students with ASD develop their social and communication skills and become comfortable with new learning environments and routines, while also encouraging them and their caregivers to consider the museum as a welcoming and non-judgmental place for engagement. Visitor resources produced by the museum include  “Visiting the Guggenheim”, a social narrative guide to the Guggenheim, available online or in downloadable print form, as well as a sensory map of the museum and sensory supports to be used in the museum galleries.  Career development opportunities include an internship and apprenticeship for young adults with autism to experience the museum as a workplace and develop job skills. 

After nine years of successful engagement through Guggenheim for All, the museum has received multiple requests from institutions across the U.S. for insight into launching like-programming, the Guggenheim Museum saw a critical need for leadership in developing a broader, meaningful museum autism program model. As museums work to develop programming opportunities for this growing audience, resources and research remains limited; there was a real need for further research and development of resources that link best practices in museum education with best practices in the field of education for individuals with autism. The Guggenheim decided in 2018 to fill this role by both conducting the research and creating a replicable, scalable program model in the form of a free digital curriculum and toolkit designed to provide a framework and resources for implementation and adaptation by other cultural institutions. In this way, the Guggenheim Museum seeks to generate a collective that over time, can engage in innovative ways with children and adults on the autism spectrum, and share best practices to further fortify autism programming in arts organizations nationally and globally.

Who benefits by this program?

By using the arts to support the strengths of individuals with autism, museums are uniquely poised to help students connect with people and works of art through communication about art and art-making.  Many of the learning strengths common to individuals with autism seem to be a natural fit with the visual arts. Museum education utilizes object-based and hands-on teaching techniques; the concrete visual nature of these experiences can scaffold conversation and interpersonal interactions for students who often exhibit a concrete visual learning style. Connecting young people with autism to the arts through their own strengths and interests allows them to develop their skills and talents in a creative and authentic way. Museum education is poised to provide a constructivist learning experience that builds on the learning strengths characteristic of people with autism while indirectly addressing the areas of socialization and communication with which these individuals often need support.  However, a specialized methodology to teach individuals with autism in the museum does not exist; current practice is focused on adapting museum education techniques for neurotypical learners.  While the learning strengths found to be specific to individuals with autism point to an educational method that is visual, little research exists on how the visual arts can be utilized in a strengths-based manner. 

What are they doing for families outside NYC?

GFA family programs have filled every month, and are attended by families both local and global. Participants have joined from across the USA as well as from England, Wales, Korea, and the Netherlands, and are developing friendshipsand connecting with peers around the globe. Our April 2021 GFA family program featured Myasia Dowdell, an artist with autism who is represented by LAND gallery. This event filled to capacity, and inspired participants to create their own work and support the artist herself.  A parent wrote: “That was absolutely amazing! My son and I enjoyed it so much. We loved hearing about the artists thought process and seeing the colorful and arresting artwork. I wanted to ask if there was somewhere to purchase Myasia’s artwork. Specifically, the Michael Jackson piece. Many thanks for a special morning!” Based on this program’s success, the museum hopes to highlight more artists with autism in upcoming GFA family programs. 

The museum is also putting together a virtual exhibition of work created by GFA students, organized by our GFA apprentice and intern, that will be live on the museum’s website and showcase the talents of participants in the program. We are also planning our first in-person GFA family event to be held in Central Park in June. The event will be held in collaboration with Kansas Children’s Discovery Center, a children’s museum in Topeka with a dedicated autism program.  The program and will focus on nature and architecture and encourage families to connect with peers across distancethrough art. 

How can I get involved ?

GFA virtual programs will be evaluated through a study with Seaver Autism Center for Research and Treatment at Mount Sinai during 2021. The study will examine the effectiveness of the GFA training program by assessing educator fidelity to a training module and examine student and caregiver expectations and satisfaction. The data generated by this study will both validate the practices we are using in GFA programs and also to add a formal evaluation component tothe GFA Toolkit.

Learn more HERE or contact Melanie Adsit at madsit@guggenheim.org

The Day of Learning: The Days After

by Alycia Halladay, PhD, Chief Science Officer

Despite all the challenges associated with the pandemic, one thing that’s become even more clear this past year is the critical role science plays in keeping us safe and healthy. We at the Autism Science Foundation have always championed science as the key to improving lives, and we know the critical role evidence-based research plays in improving the lives of people with autism. Science is at the core of what we do, it was at the heart of last Thursday’s successful Day of Learning.

Although we missed seeing everyone in person, we are proud that the event shattered all previous attendance records. This robust participation demonstrated our community’s collective commitment to autism science, and the critical role research plays in learning more about the causes of autism and how to treat people with autism more effectively.

I recapped the event in my podcast this week, and I encourage you to take a listen to get a quick overview of the important topics we covered—which, like always, were determined based on feedback from the ASF community.

Unsurprisingly, the impact of the COVID-19 pandemic remains front of mind for many, and we are grateful to both Dr. Pam Feliciano of the Simons Foundation Autism Research Initiative for providing an overview of the impact of the pandemic on autism families, and to Dr. Lonnie Zwaigenbaum of the University of Alberta, Canada, for ways we can rethink ASD assessment in the pandemic and beyond. 

Another important story on people’s mind this past year following the murder of George Floyd is social justice, and to making sure that marginalized groups receive the quality of care they deserve in a timely manner. Dr. Brian Boyd of the University of Kansas noted in his talk that Black people are less likely to be diagnosed with autism, and if they are diagnosed it typically happens later. As I say in my podcast, one thing that has become clear is we need to prioritize the pillars of social justice to support these families: equity, participation, diversity and human rights.

Our other speakers also touched on some of the most important issues in the autism community right now. Dr. Sarah Spence of Boston Children’s Hospital delivered the inaugural Jake Rimland Memorial Talk on what you need to know about autism and Sudden Unexpected Death in Epilepsy (SUDEP); Dr. Shafali Jeste of the University of California, Los Angeles discussed finding the right help for people with autism; and Dr. Orrin Devinsky of New York University discussed the latest on cannabidiol research in treating ASD. I also recap all these talks in my latest podcast.

In addition to my podcast, we will also be releasing videos of each talk shortly, and we are grateful to all our Day of Learning speakers for sharing their findings with us. We also thank everyone who joined us for the event, and to the entire ASF community for its commitment to our shared goal of supporting science that can make a meaningful difference in the lives of people with autism.

%d bloggers like this: